
October  1965 Stanley L. Rosenthal 605 

SOME  PRELIMINARY  THEORETICAL  CONSIDERATIONS  OF  TROPOSPHERIC 
WAVE  MOTIONS IN EQUATORIAL  LATITUDES 

STANLEY L. ROSENTHAL 

National  Hurricane  Research  Laboratory,  Environmental  Science  Services  Administration,  Miami, Fla. 

ABSTRACT 

Wave  solutions to  the linearized, quasi-hydrostatic  equations for adiabatic,  nonviscous flow on  an  equatorially 
oriented  beta  plane  are  obtained.  The  basic  current is assumed to  be zonal  and  invariant  in  both  space  and  time. 
Only solutions  for which the  meridional wind component is symmetric  with  respect  to  the  equator  are  considered. 
Disturbances  with  wavelengths  on  the  order of 103 km.  are  found  to  be  very  nearly  nondivergent.  The  solutions 
show  the  meridional wind component  to  be  very  nearly  geostrophic  even at very low latitudes.  The  perturbation of 
the  zonal wind,  however, is highly  ageostrophic a t   the  very  low  latitudes  and  significantly  ageostrophic  even  in 
subtropical  latitudes. 

1. INTRODUCTION 

Charney's [3] scale analysis  predicts that nonviscous, 
adiabatic, synoptic-scale atmospheric motions near the 
equator should be  very  nearly  nondivergent and, there- 
fore, adequately described by  the conservation of absolute 
vorticity. In  the present study, such  motions  are examined 
in terms of certain  wave  solutions  obtained from the linear- 
ized , quasi-hydrostatic  equations for adiabatic, nonviscous 
flow  on a beta plane. 

Aside  from the assumptions cited above, the basic cur- 
rent is taken to be zonal and invariant in both  space and 
t,ime. The discussion, therefore,  pertains only to existing 
perturbations and provides no information concerning the 
manner  in which they originate. It is not claimed that  the 
theory is applicable to observed equatorial  wave motions 
such as  those described by  Palmer [6].  It is quite likely 
that  the  latter  are significantly affected  by the release of 
latent  heat and by  quasi-barotropic  instabilities  due to 
meridional shears of the basic current. However, as will 
be seen later,  there is a fairly  reasonable superficial 
resemblance  between the  structure o f  the observed and 
theoretical waves. 

Previous  theoretical  studies of disturbances in equatorial 
latitudes  have assumed the flow to be  nondivergent [lo] or 
have simplified the problem through specification of one of 
the velocity components [7, 111. Freeman and Graves [4] 
make  both of these simplifications. Neither  is included in 
the model  developed  below. On the  other  hand,  Rosenthal 
[7] and Sherman [I 11 allowed the basic  current  to  vary  with 
latitude;  this is not  done  here. 

-+u* -+a* -+w*  -+pyu*+-=o dv*  dv* du* dv* ** 
dt dx by dp by ' (2) 

and 
-="-+-). dW* du* dv* 
32) dx dy 

Here, t is time, x is zonal distance, y is meridional distance 
measured positive northward from the  equator, p is pres- 
sure, u* is the zonal wind component, v* is the meridional 
wind component,  W* is the p-system  vertical  motion, 4* 
is the geopotential of isobaric  surfaces, 

is  the  static  stability,  B=-"aconstant  andf is the Coriolis 

parameter. 

d j  
a?/ 

The  dependent variables are  written, 

u*=U+u(x, y, p, t ) ,  U=a  constant ( 5 )  

v*=v(z, Y, Pl t )  ( 6 )  

o*=w(x, Y, p, t> (7) 

+*=ay/, P)+4(X, Y, P, t> (8) 
and 

The variables, u, v, W, 4 are  perturbation  quantities. 
Since the  base  state  must satisfy the governing equations, 

2. SOLUTION OF THE  PERTURBATION  EQUATIONS 

The equations which  govern nonviscous, adiabatic, 

we find 

quasi-hydrostatic, beta plane flow are, and, upon integration, 
du* du* du* 
at ax by dP bX pyv*+-=o, (1) "fu* -+v* "$-w*" &* 
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Substitution of (5 ) ,  (6), (7), and (8) into (l), (2), (3), and 
(4), and  utilization of (9) and (10) yields, after lineariza- where 
tion by  the usual technique, 

~ + u - - p y v + - = o  bU a4 From (26),  (27),  (28), and (29), we obtain 

~d2&+ --X -+- Q=o bt b x  bX (11) 

~+u-+pyu+-=o  bV * dXZ (i ): (30) 

at ax all (I2) where 

--+u-+bw=O 3% b24 
bpbt   bpbx  

and 

(14) Equation (30) is a special case of the confluent hyper- 
geometric equation ([5] p. 96) 

where 
s -+(b-~) d2T d T  - -~T=o 

ds2 ds 

is assumed constant. If, a t  t=O, we require v to  attain  its whose general solution may  be  written 
maximum  value a t  x=O, p=po, then  the  system (1 1), 
(12),  (13), and (14) has solutions of the form T=K,M(a, b,  s)+Kzsl-bM(a-b+l, 2--6, s)  

u = A ( y )  sin k(x-ct) cos m(p-po)  (16) where 

v=B(y) cos k(x-ct) cos m(p-po)  (17) M(a, b, s)=1+--.-+"-+ b l! b(b+l) 2! . . . 
+=H(y) sin k(x-ct) cos m(p-po) (la) The general solution to (30) is then 

w=W(y) cos k(x-ct) sin m(p-po)  (19) 

where po=lOOO mb., k=2r/L, L is the wavelength, c is 

a s a(a+1) s2 

the wave speed,  and 
m = m J p 0  

(20) read 
By use of (27) and (28), equation (32) may be arranged to 

n is an integer  equal to  the number of surfaces of nondi- 
vergence. From (19) and (20), w=O a t  p=O and p=po. B = K , ~  2y M(", 
Substitution of (16),  (17), (18), and (19) into ( l l ) ,  (12), 2 2  7 

8u2 
" 

(13), and (14) gives 

kAA-fiyB+kH=O ' 

- 
and 

mW=- kA+- ( 3 
wh%re 

A=U-C 

By elimination of variables between (21),  (22),  (23), and 
(24), we obtain  the following equation  for B: 

(p- k2A) ( &A2- Z ) ]  
Fp2A B=O (26) 

The following  new variables are introduced, 

The  parameter a is an eigenvalue of the problem and 
must  be determined  from side conditions imposed upon the 
motion. If we restrict ourselves to  flows in which u is 
symmetric about  the  equator  (this is the case, for example, 
with the Palmer  waves),  then &-LO. If it is further 
required that v vanish a t  

y = f y ,  
then a= a* where 

In general, numerical  methods are required if (35) is to be 
solved for a*. 

A simpler solution is obtained when the condition 
v( & ym) = O  is replaced by  the less stringent  restriction that 
v decay with  distance from the  equator.  This can be 
achieved by selecting a=O in which case 
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and, from (31), 

(37) 

The roots of (37) are' 

A,=-? 2 [1+(1+8>11'] 

A3= [(l+gJl2-1] 

(39) 

Table 1 lists some values of A I ,   A 2 ,  and A3 (Z=3 m.t.s. 
units; a reasonable value for the tropical mid-troposphere). 
AI  is  a  pure  internal  gravity wave which propagates  rap- 
idly westward relative to  the basic current. A2 is an 
inertia-gravity wave which propagates  rapidly  eastward 
relative to  the basic current. A3 is also an inertia-gravity 
wave. However, its propagation  relative to  the basic cur- 
rent is westward at  approximately the Rossby rate of 
AND=p/k2  (it is shown in  the appendix that A3 reduces to 
AND if the motion studied  here is constrained to be nondi- 
vergent). According to Palmer's [6] observations, the 
motion of equatorial waves relative  to  the basic current 
is small and, therefore, we assume A3 to be the meteoro- 
logically significant root. 

Equation (40) may  be  written, 

When the basic current is easterly (E= - U>O), 

CND= - E-AND 
and 

(43) 

The disturbances, therefore, propagate westward at  a 
speed which exceeds that of the basic current but which 
is less than would be  the case for nondivergent flow. The 
distribution of convergence and divergence must then 
be such that westward  relative  motion  is  retarded.  This 
implies convergence to  the  east of zones of cyclonic 
relative  vorticity  and divergence to  the west of such 
regions. The reverse is true of zones of anticyclonic 
relative  vorticity and  the rule is equally valid in  both  the 
Northern  and  Southern Hemispheres and for easterly 
and westerly basic currents. 

TABLE 1.-Roots of  the  frequency  equation (37) as  given b y  equations 
(38), (39), and (40). Values are  given in m. see. -I .  n=l corre- 
sponds  to  one  surface of nondivergence; n=9  corresponds  to two 
surfaces of nondiuergence. The  static  stahility  is  taken  as 3 m.t.s. 
units. A N ~ = j 3 / 1 9  i s  the  value of A appropriate  to  nondivergent 
motion. 

n=l 7k= 2 

L (km.) 1 A N D  I AI Az A3 1 A2 Aa 

2OOo 
1000 

2.3 
5.2  3000 

0.55 -28.2 27.5  0.55 -55.6  55.0 0.58 

10.5  -38.2 27.5 
7.3  -35.0 27.5 

11.8 -66.7  55.0  14.4 5000 

4.4 
8.0 -63.0 55.0 

-32.0  27.5 
9.3 4000 

2.2 -29.8 27.5 
4.7  -59.7  55.0 
2.2 -57.2  55.0 

From  table 1, it is clear that A3 departs more and more 
from AND as  the wavelength increases. The model 
convergence and divergence is  then of greater signi- 
ficance at  the longer wavelengths. This  is similar to  the 
so-called "barotropic divergence" found in  barotropic, 
quasi-geostrophic models which allow non-zero vertical 
integrals of the divergence [l ,  2, 8, 9,  12, etc.] and is 
basically different from the divergence discussed in 
Charney's [3] scale analysis of low-latitude  atmospheric 
motions. The  latter  has  magnitude 

r 73 
(44) 

where U is the characteristic velocity, L is the char- 
acteristic scale, g the acceleration of gravity, e the 
potential  temperature,  and H the scale height.  This 
divergence is seen to decrease with increasing wavelength. 

and (36), it is a simple matter  to complete the solutions 
for u, v, C$ and w.  These  are 

By use of (161, (17), (181, 0 9 ) ,  (211, (22), (231, (241, 

Eu2 

and 
B U Z  
" 

W=m7(A3+7)  
'A3Y voe 27 cos k(z-ct) sin m(p-po) .  (48) 

3. DISCUSSION OF THE SOLUTIONS 
The divergence may be calculated  from (48) as 

-bw/bp. The amplitude of the divergence is then 

8u2 

(49) 

over,  when A=y, (21), (22), (23). and (24) may be solved  to  yield B=o&xp(-Py*/D) thus 
I Thederivation  ofequation (30)required  division by k(;-m2A2)=krn? (??-A?). 1Iow- 

showing that (36) is valid even for this casc. @I reaches its maximum magnitude a t  
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y= .(;) 1/2  

hence, 

Table 2 gives I@[max as a  function of wavelength for 
a=3 m.t.s., v0=5 m. sec.", n=l and n=2. The values 
are found to  be extremely small. Although, as mentioned 
in the previous section, the divergence found in  this 
model is basically different from that of Charney's [3] 
discussion, our  results do confirm Charney's conclusion 
that it is necessary to include  precipitation  and the release 
of latent  heat in order to  obtain realistic  vertical motion 
and divergence at  equatorial  latitudes. Table 2 also 
shows the divergence increases in  magnitude  as  the wave- 
length increases. This confirms our conclusions based on 
a discussion of the frequency  equation in the previous 
section. It also emphasizes the different nature of the 
divergence of this model and that of Charney's model 
(also mentioned  in section 2). 

- 

from (45) and (46). This  quantity reaches its.maximum 
amplitude 

at  the  equator. Values of I P Jmax are given by  table 3;  
the  ratio I@)lmax/l { lmax is shown by table 4. We  find 
the  relative  vorticity  to  have  an  order of magnitude which 
is meteorologically significant and which is  large com- 
pared to  that of the divergence. Relative  to  the  Palmer 
waves [6], the model vorticity  is of the correct  order of 
magnitude.  However, the Palmer waves, which typically 
have  a  wavelength of about 2000 km., show divergences 
on the order of  sec.". Hence, the model divergence 
is small compared to that of the  Palmer waves. The 
latter, therefore, should probably be  attributed  to  the 
release of latent  heat in regions of organized convection 
associated with  the waves. 

It is of interest  to examine the  extent  to which the 
perturbation-velocity  components are in geostrophic equi- 
librium. For  this purpose, we define the following ratios: 

Ibu I T7bul 

It is clear that small values of R o z  and Ro, correspond to 
near geostrophic flow. Large values indicate highly 
ageostrophic motion. Roz is  independent of latitude while 
Ro, does not  vary with  wavelength.  From  table 5, we see 
that Roz is quite small for the  shorter wavelengths. For 
these wavelengths, therefore, the symmetrical (v) com- 

TABLE 2.-Values cf the maximu_m magnitude of the divergence as 
computed from equation (60). a=S m.t.s. and v 0 = 6  m. set.". 
Values are  given in  units of set.". 

L (km.) I n=l  1 n=2 
~~ 

TABLE 3.-Values of the maximum- magnitude of the relative  vorticity 
computed from equation (51) .  a=S m.t.s. and 00=5 m. set.". 
Values are  given in  units of set." 

L(km.) I n = l  1 n=2 

1000 .......___ 
2ooo ...._._.._ 

5.OXlO-5 5.OXlO-3 

1.6XlO-5  1.4XlO-3 4ooo ....._.... 
1.9XlO-5 1.8XlO-5 3ooo ______.... 
2.7XlO-5  2.6XlO-3 

5 m  ._____.... 1 . 4 ~ 1 ~  1 . 2 ~ 1 0 - 5  

TABLE 4.- Values of the ratio !!%%?. a=S m.1.s. I I lmsx 

L(km.) I n = l  1 n=2  

2wo _____..... 
3000 ...._._... 

7.OXlO-3  3.OXlO-3 

5.6XlO-2 2.9XlO-2 5ooo ._._._.... 
3.7XlO-2 1.8XlO-2 4wo .___...... 
2.OX10-2 8.9XlO-3 

1000 ._.__..... 1 . 1 ~ 1 ~ 3   4 . 0 ~ 1 0 - 4  

ponent of the  perturbation  motion  is  very  nearly in 
geostrophic  equilibrium even at  very low latitudes. The 
behavior of the asymmetrical (u) perturbation  component 
is quite different. Ro, tends  to infinity as the  equator  is 
approached.  Table 6 shows that u is  markedly ageo- 
strophic even in  subtropical  latitudes. 

The fact that  the meridional wind component of our 
model is  very  nearly in geostrophic  equilibrium helps to 
explain the different behaviors of the divergence of this 
model and that of Charney 131. According to Charney's 
theory, the horizontal  acceleration  balances the horizontal 
pressure-gradient force. The horizontal  temperature 
gradients needed to  estimate  the vertical  motion  and 
divergence are, therefore, computed from vertical  shears of 
the horizontal acceleration. In the model developed here, 
i34/& (the only component of Vcp which affects w in  the 
thermodynamic  equation) is given,  approximately, by  the 
Coriolis term, Pyv, and  not  by  the horizontal acceleration. 
It is to be noted that  part of this discrepency stems 
directly from the decision to  treat only the syrnIqetrica1 
part of (33). It is likely that  the asymmetrical solution 
would give results  more like those of Charney. 

The role of divergence in  the  vorticity  equation  within 
the framework of our model may  be determined by a, 

study of the  ratio 

f ( V * V )  

P V  
(54) 
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TARLE 5.-Values of RQz computed from equation (5.2). ~ = 3 s m ~ t . s .  
units. 

L(km.) n=2 n=l 

1000"- """_ 
2ooo- - - - - - - - - - 

0.01 0.02 
0.04 0.07 

3000 ""_ _" - - 0. os 0. 14 
4000"- "_"" 
5000- " "_" - - 

0.13 
0. 18 0.28 

0.21 

TARLE 6.-Values of RQ, computed from equation (53). 2 = 3  m.1.s. 
units. 

Lat. (deg.) I n=l 1 n=2 

195 
49.1 
21.8 
12.2 
7.40 
1.95 
0.87 
0.44 
0.31 
0.22 

97.5 
24.5 
10.9 

3.70 
6. 10 

0.98 
0.44 
0.22 
0. 16 
0. 11 

TABLE 7.-Values of the ratio computed from equation 
(64).a=S m.f.s. units 

Lat. (deg.) 1 L=2ooo km., n=l 1 L=5ooo km., n=2 

where j ( 0  'V) is the amplitude of j "I-- and 

pv is the  amplitude of pV. Values of this ratio for 
L=2000 km., n = l  and L=5000 km., n=2 are  listed 
by  table 7. With L=2000 km., n=1, we find, as 
predicted by Charney [3], that  the divergence term  in  the 
vorticity  equation  is negligible at  very low latitudes. 
On the other  hand,  with L=5000 km., n=2, this  term 
becomes significant within 5" to 10" lat. of the  equator. 

We now turn  to a  description of some synoptic  aspects 
of the theoretical  disturbances. Since the motion  is  very 
nearly  nondivergent, it is convenient and  appropriate  to 
introduce  a  stream  function.  From  the  Helmholtz 
theorem, 

(:: Z;) 

u=--+- b* bx 
b y  bx 

and 
(55) 

where fi is the  stream  function for the  perturbation motion 
and x is the corresponding velocity potential.  Unfortu- 
nately, when u and v are given by (45) and (46), J. and X 
cannot be obtained in closed form. Since we require + 
only for the purpose of presenting a pictorial  representa- 
tion of the flow pattern  and since the flow is very  nearly 
nondivergent, the following approximate  technique will 

- 
0 

I 

"- 

I 

t l  - 

f7 

14 

... 

4 

I/ 

1 Nor11 

1 

FIGURE 1.-Perturbation-stream  function  computed from equation 
(57). Isopleths are labeled in units of lo5 m.2 set.", ~ = 3  m.t.s.,  
L=2000 km., u0=5 rn. set.", t=O, p = p o ,   n = l .  

- 

suffice.  We neglect the  potential flow in (55) and (56), 
evaluate u and v from (45) and (46), respectively, and 
integrate  the  resulting expressions for b+/bx and b$/by. 
This yields two values for # which are only approximately 
equal  due to  the neglect of bx/bx and ax/dy. A final 
estimate  is  obtained by averaging the two approximations. 
The result  is, 

Figure 1 shows the  +pattern for a=3 m.t.s., v0-5 m. 
sec.", 1;=2000 km., n=l, t = O ,  and p=lOOO mb.  The 
motion consists of alternating,  north-south elongated cells 
of clockwise and counterclockwise circulations each of 
which is  centered on the  equator.  The clockwise  cells are 
cyclonic in  the  Southern  Hemisphere  and  anticyclonic in 
the  Northern Hemisphere. The reverse is true of the 
counterclockwise cells. Relative to the field of perturba- 
tion-pressure height  (computed from (47) and shown by 
fig. 2), cyclonic perturbation  motion is associated with low 
perturbation pressure-height and  the reverse is true of 
anticyclonic perturbation  motion. The field of perturba- 
tion pressure-height itself is composed of alternating Highs 
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FIGURE  2.-Perturbation  pressure-height  computed  from  equation FIGURE 3.-Total-stream  function  obtained  by  adding  to  figure 1 
(47). Isopleths  are  lfbeled  in  units of meters.  Parameters  are the  stream  function  for  a  constant  easterly  current of 7.5 m. set.". 
the  same  as for  figure 1. Isopleths  are  labeled in units of lo5 m.* set.". Parameters 

as for  figure 1. 

and Lows centered  asymmetrically at  some distance from 
the  equator. The amplitude of the pressure-height per- 
turbation is only a few meters  and,  therefore, if waves of 
this  type were to exist in  the real  atmosphere, the varia- 
bility of pressure-height associated  with  them would prob- 
ably go undetected.  The  total-stream function  and 
pressure-height (figs. 3 and 4, respectively), which consists 
of the  sums of the  perturbation  and  base-state  quantities 
(with v= -7.5 m. sec.") shows some resemblance to  the 
streamlines  and  pressure patterns of Palmer's [6] empirical 
model (see his figs. 8 and 9). 

The 1000-mb. fields of perturbation-relative  vorticity 
and divergence are shown, respectively, by figures 5 and 6. 
Positive  relative  vorticity corresponds to counterclockwise 
turning  and, hence, to cyclonic relative  vorticity  in  the 
Northern Hemisphere  and  anticyclonic  relative  vorticity 
in the  Southern Hemisphere. The reverse is true for 
negative  relative  vorticity. Thus,  as would be expected 
from our comparison of the  perturbation-stream function 
with the  perturbation  pressure-height, cyclonic relative 
vorticity  is associated with low perturbation pressure- 
height  and the reverse is true for anticyclonic  relative 
vorticity. 

Everywhere, except at  the  equator  itself, convergence 
occurs to  the  east of cyclonic relative  vorticity  and diver- 
gence occurs to  the  east of anticyclonic relative  vorticity 
(fig. 6). This is consistent  with the  distribution of con- 
vergence and divergence previously deduced from the 

-frequency  equation.  The  spatial  distribution of conver- 
gence and divergence is in good agreement  with that of 
Palmer's empirical model ([6] fig. IO), however the mag- 
nitudes given by  the theory are far too small. 

4. CONCLUSIONS 

In equatorial lat.it.udes, nonviscous, adiabatic  pertur- 
bations superimposed upon an  invariant basic current 
are  very nearly  nondivergent  provided that  the wave- 
length  is of the  order lo3 km. and  the meridional wind 
component is symmetric  with  respect  to  t>he  equator. 
Also, the meridional wind componenb  will be very  nearly 
geostrophic even a t  very low latitudes. In  these cir- 
cumstances, the zonal component of the  perturbation 
wind will be asymmetric  with  respect to the  equator  and 
highly ageostrophic  in  equatorial  latitudes. The order 
of magnitude of the  relative  vorticity  obtained  from  the 
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5+ 45* 

5' t 1"' 

FIGURE 4.-Total pressure-height obtained  by  adding  to figure 2 
the pressure-height computed  from  equation (10) for a basic 
easterly  current of 7.5 m. set.". Isopleths  are labeled  in units 
of meters.  Parameters  as  for figure 1 .  

theory  is  in  agreement  with that of observed equatorial 
disturba.nces as described by Palmer [6] .  The order of 
magnit>ude of the divergence given by  the model is quite 
small compared to  that. found empirically by  Palmer [6]. 
This  result,  taken toget,her with  Charney's [3] work, would 
seem to  indicate  that' models of equatorial flow must ta.ke, 
into account the  latent  heating produced by organized 
convection in  order  to  provide  realistic  vertical  motions 
and divergences. 

The  amplitude of the geopotential perturbation given 
by  the theory is extremely  small;  with  present standards 
of observation  in  equatorial  lat,itudes, i t  would probably 
be undetectable. As is the case in higher latitudes,  the 
model  shows cyclonic flow to be associated with low 
geopotential and  the reverse  to be  true of anticyclonic 
flow. 

APPENDIX 

lnspection of (23) and (24) shows that  the solution for 
nondivergent  motion can be  obt,ained by allowing a to  tend 
toward infinity while H, A, k, and m remain finite. In this 
case, (40) yields 

786-520 0 - 6 6  - - 5  

15'- 

10'- 

5' - 

UDllll  - 

5' - 

10' - 

15'- 

15 

\I 5 

-15 

-15' 

0 -  - 204 

15* 

- 10' 

- 5' 
,i 5, 

E W t I  

- 5' 

1 

'I 
J 

FIGURE 5.-Relative vorticity  computed  from ecruations (45) and 
(46). Positive  values  indicate counterclockwise rotation. Iso- 
pleths  are labeled  in units of 10-6 ser.". Parameters  as  for 
figure 1. 

A3= lim 
Y+- 

-1 2 [ ( 1 + 3 2 - q  

1 

L Y l 
or, if 1'Hospital's rule is employed, 

From (36) the nondivergent  solution for B is 

B=v~ (A.3) 

provided that, y is not allowed to  approach  infinity.  From 
(24) 1 

A=O (A .4) 

for nondivergent  motion. From (21), the nondivergent 
value of H is 

PY 
k (A -5) H=- DO 

Equations (A.3) and (A.4) are exactly the assumptions 
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P I ~ U R E  6,”L)ivergence computed  from  equations (45) and  (46). 
Isopleths  are  labeled  in  units of 109 sec.”. Parameters  as for 
figure 1. 

employed by Rossby [SI. Furthermore, (A.2),  (A.3), 
(A.4), and (A.5) correspond precisery to Freeman  and 
Graves’ [4] recent  theory of equatorial  Rossby waves. 

Alternately, (A.2),  (A.3),  (A.4), and (A.5) may  be 
obtained by eliminating H between (21) and (22) to 
form the “vorticity  equation”  and  then imposing the 
restriction 

dB 
dY - 

kA+--O 

The  latter constrains the motion to  be  nondivergent. 
Upon executing this  sequence of operations,  equation 
(A.7) is  obtained. 

2 A=O corresponds to a trivial  solution  in  the  nondivergent cdsc 

The solution for sgmmetricd B is 

B = v ~  COS ~ (2z+1)?r y, 1=an integer (A.s) 
2Yw 

provided that 
(2Z+1)2~2-k2A-~ 

4& 
“ 

A (A.9) 

If, as was done  in  the  derivations of (36), we require B 
to have no zeroes over the  range of y, then yw must 
approach  infinity. In this case, (A.8) reduces to (A.3), 
(A.9) gives (A.2),  (A.6) gives (A.4), and (A.5) may  be 
obtained from (21). 
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